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QUESTION 1. [34 MARKS] 
  

1.1 Determine whether each of the following mappings T is linear, or not. Justify your answer. 

(a) T: R? > R’, where T(z, y) = (3y, 2x, —y). [5] 

(b) T: P, + R?’, where T[p(x)] = [p(0), p(1)]. [5] 

(c) T: R® > R’, where T(z, y,z) = (x+1,y+2). [5] 

1.2 Define the following terms as they are used in linear algebra: 

(a) The kernel of a linear mapping. [2] 

(b) A singular mapping. [2] 

(c) A one-to-one mapping. [2] 

1.3 Let V be the subspace of C[0,2z] spanned by the vectors 1,sinx,cosz, and let T: V > R?® 

be the evaluation transformation on V at the sequence points 0, 7,27. Find 

(a) T(1+sinz + cosz). [2] 

(b) ker(T). [5] 

1.4 Let F and G be the linear operators on R? defined by 

F(x,y) =(«+y,0) and G(x,y) = (-y,2). 

Find formulas defining the following linear operators: 

(a) 3F —2G. (2] 

(b) FoG. [2] 

(c) G?. (2] 

QUESTION 2. [28 MARKS] 
  

2.1 Let T’: P, + P» be a linear operator defined by 

T (ao + aX + agu*) = ap + a; (3x — 5) + ao(3x — 5)”, 

and the basis S = {1,x,2?} for Pp. 

(a) Find the matrix representation of T relative to S, and denote it by [T]s. [7]



(b) By observing that S' is the standard basis for P2, or otherwise, find the coordinate vector 
for p= 1+ 2z + 32? relative to the basis S, and denote it by [p]s. [2] 

(c) Use the transition matrix you obtained in part (a) above and the result in (b) to 

compute [T(p)]s. [4] 

(d) Hence, determine T(p) = T(1+ 2x + 32”), again by noting that S is the standard 
basis for P). [2] 

2.2 Consider the bases 

Sy = {pi,po} = {64+ 32, 104+ 22} and Sp = {qm, qo} = {2, 34+ 22} 

for P,, the vector space of polynomials of degree < 1. 

(a) Find the transition matrix from S; to Sp and denote it by Ps,-ss,. (7] 

(b) Compute the coordinate vector [p]s,, where p = —4+ 2, and use the transition 

matrix you obtained in part (a) above to compute [p]s,. (6] 

QUESTION 3. [20 MARKS] 
  

3.1 Prove that the characteristic polynomial of a 2 x 2 matrix A can be expressed as 

d? — tr(A)A + det(A). 

  

[4] 

0 Q..-2 —2 Q -1 
3.2 Suppose A= ]1 2 1] andP=]1 1 =O 

10 8 1 0 1 

(a) Confirm that P diagonalises A, by finding P~! and computing P~'AP = D. [9] 

(b) Hence, find A’. (7] 

QUESTION 4. [18 MARKS] 

4.1 Let x7 Ax be a quadratic form in the variables x1, 29,--- ,t,, and define T: R" > R 

by T(x) = x? Ax. Show that T(x + y) = T(x) + 2x? Ay + T(y) and T(cx) = c’T(x), 
for any x,y € R" andceER. [8] 

4.2 Find an orthogonal change of variables that eliminates the cross product terms in the 
quadratic form 

Q(x) = 2} — 2} — 4ay 22 + 42923 

and express @ in terms of the new variables. [10] 
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